
I/O and Burst Buffer

- 1 -

January 25th, 2019

New User Training

Quincey Koziol
Data Analytics Service

Group

Outline

• Parallel I/O

– I/O Stack Overview

– I/O Profiling Tools: Darshan, Successful Story

– I/O Pattern Analysis: Contiguous, Non-contiguous, Random, etc

– I/O Libraries: MPI-IO, HDF5, H5Py

• Burst Buffer

– Architecture

– Data Path: BB to/from Lustre

– How to use: Stage in/out

– Success Story: BB vs. Lustre; Astronomy Apps: H5Boss

- 2 -

df=pd.read_csv(“/scratch/data.csv”)

I/O Stack: Moving Data To Disk

High Level I/O Libraries map
application abstractions onto
storage abstractions and
provide data portability.

HDF5, Parallel netCDF, ADIOS

I/O Middleware organizes accesses
from many processes, especially
those using collective
I/O.

MPI-IO, GLEAN, PLFS

Parallel file system maintains
logical file model and provides
efficient access to data.

PVFS, PanFS, GPFS, Lustre

3

I/O Hardware

Application

Parallel File System

High-Level I/O Library
I/O Middleware

I/O Forwarding

Based on Jialin Liu, Philip Carns, and Rob Ross’
slides

I/O Forwarding transforms I/O from
many clients into fewer, larger
request; reduces lock contention;
and bridges between the HPC
system and external storage.

IBM ciod, IOFSL, Cray DVS, Cray
Datawarp

Productive Interface

Productive Interface builds a
thin layer on top of existing
high performance I/O library for
productive big data analytics

Python, Spark, TensorFlow

Home: /global/homes/j/jialin
Scratch: /global/cscratch1/sd/jialin
Project: /project/projectdirs/dasrepo

Productive I/O Interface: H5py

4

Independent IO Collective IO

- 5 -

Coding Efforts

- 6 -

H5py vs. HDF5 Performance

Single Node Multi-nodes

Metadata
1k File Creation 63.8%

1k Object Scanning 60.0%

Independent I/O
Weak Scaling 97.8% 100%

Strong Scaling 100% 97.1%

Collective I/O
Weak Scaling 100% 90%

Strong Scaling 98.6% 87%

H5Py Performance / HDF5 Performance
Questions: When you gain the productivity, how much performance you can afford to lose?

HDF5 vs. H5py: http://www.nersc.gov/users/data-analytics/data-management/i-o-libraries/hdf5-2/h5py/

http://www.nersc.gov/users/data-analytics/data-management/i-o-libraries/hdf5-2/h5py/

High Level I/O Libraries

➢ Take advantage of high-performance parallel I/O while reducing complexity
➢ Add a well-defined layer to the I/O stack

➢ Allow users to specify complex data relationships and dependencies

➢ Come with machine-independent data formats, self-describing, suitable for
array-oriented scientific data

➢ Examples
➢ HDF5: HDF group, since 1989, top 5 libraries at NERSC

➢ Parallel netCDF: NWU, ANL, since 2001

➢ ADIOS: ORNL, since 2009

7

High Level I/O Libraries: HDF5

MPI_Init(&argc, &argv);

fapl_id = H5Pcreate(H5P_FILE_ACCESS);
H5Pset_fapl_mpio(fapl_id, comm, info);
file_id = H5Fcreate(FNAME,…, fapl_id);
space_id = H5Screate_simple(…);
dset_id = H5Dcreate(file_id, DNAME, H5T_NATIVE_INT,
 space_id,…);
xf_id = H5Pcreate(H5P_DATASET_XFER);
H5Pset_dxpl_mpio(xf_id, H5FD_MPIO_COLLECTIVE);
status = H5Dwrite(dset_id, H5T_NATIVE_INT, …, xf_id…);
MPI_Finalize();

8

➢ A parallel HDF5 program has a few extra calls than a serial one

I/O Middleware

➢ Why additional I/O Software?
➢ Additional I/O software provides improved performance and usability over directly

accessing the parallel file system.
➢ Reduces or (ideally) eliminates need for optimization in application codes.

➢ MPI-IO
➢ I/O interface specification for use in MPI apps
➢ Data model is same as POSIX: Stream of bytes in a file

➢ MPI-IO Features
➢ Collective I/O
➢ Noncontiguous I/O with MPI datatypes and file views
➢ Nonblocking I/O
➢ Fortran bindings (and additional languages)
➢ System for encoding files in a portable format (external32)

9

Independent and Collective I/O

➢ Independent I/O operations specify only what a single process will do

➢ Independent I/O calls do not pass on relationships between I/O on other processes

➢ Why use independent I/O
➢ Sometimes the synchronization of collective calls is not natural

➢ Sometimes the overhead of collective calls outweighs their benefits
➢ Example: very small I/O during metadata operations

10

P0 P1 P2 P3 P4 P5

Independent I/O

Independent and Collective I/O

➢ Collective I/O is coordinated access to storage by a group of processes

➢ Collective I/O functions are called by all processes participating in I/O

➢ Why use collective I/O
➢ Allows I/O layers to know more about access as a whole, more opportunities for

optimization in lower software layers, better performance

➢ Combined with non-contiguous accesses yields highest performance

11

P0 P1 P2 P3 P4 P5

Collective I/O

I/O Pattern Analysis

12

Contiguous I/O
● read time, 0.1ms

Noncontiguous I/O
● Seek time, 4ms
● Rotation time, 3ms
● Read time, 0.1 ms
● Total time: 7.1ms

How to describe your I/O
● Number of Processes
● Number of Files
● Size per file
● Frequency of I/O
● Size per I/O
● Read or Write or ?
● Shared File or not
● I/O Libraries
● ...

What is your I/O Pattern?
● Contiguous or Non-contiguous?
● (i.e. Sequential or Random?)

I/O Profiling

Darshan
• Loaded by default for all NERSC users, module load darshan
• module list: darshan/3.1.4
• MPI-IO/POSIX/HDF5 I/O lightweight profiling tool, developed by ANL

Darshan Log
• Location: /global/cscratch1/sd/darshanlogs/2019/1/25/
• Statistics: 5000~ logs per day
• Format: Username_Jobname_idSlurm_JobId_xxx.darshan
• Example: zulissi_vasp_std_id16178922_11-4-71121-6884128420676186490_3.darshan

Darshan Command

• darshan-job-summary.pl xxxx.darshan
• darshan-summary-per-file.sh xxxx.darshan

- 13 -

- 14 -

Success Story: Athena’s I/O
Athena is an astrophysics code, used in wide range of problems: interstellar
medium, star formation, etc.

IO Analysis with Darshan

“I made the changes you suggested and
did the test. It solved my problem!
Previously, the I/O can take 40% of the
time. Now the I/O time is basically 0.

Thank you very much for your help. This is
really useful.”

 ---Dr. Yan-Fei Jiang, Harvard

darshan-job-summary.pl darshan_log output.pdf
Darshan: http://www.nersc.gov/users/software/performance-and-debugging-tools/darshan/
HDF5: http://www.nersc.gov/users/data-analytics/data-management/i-o-libraries/hdf5-2/
Athena: https://princetonuniversity.github.io/athena/

http://www.nersc.gov/users/software/performance-and-debugging-tools/darshan/
http://www.nersc.gov/users/data-analytics/data-management/i-o-libraries/hdf5-2/
https://princetonuniversity.github.io/athena/

What’s Next

• Parallel I/O

– I/O Stack Overview

– I/O Libraries: MPI-IO, HDF5, H5Py

– I/O Pattern Analysis: Contiguous, Non-contiguous, Random, etc

– I/O Profiling Tools: Darshan, Success Story

File system is also important: Lustre / GPFS / HPSS/ DataWarp
http://www.nersc.gov/users/storage-and-file-systems/i-o-resources-for-scientific-applications/optimizing-io-performance-for-lustre/

• Burst Buffer: Hard Disk Drive Solid State Drive

- 15 -

I/O Libraries

http://www.nersc.gov/users/storage-and-file-systems/i-o-resources-for-scientific-applications/optimizing-io-performance-for-lustre/

Burst Buffer Architecture

- 16 -

➢ DataWarp software (integrated with SLURM WLM) allocates portions of available storage to users
per-job (or ‘persistent’).

➢ Users see a POSIX filesystem
➢ Filesystem can be striped across multiple BB nodes (depending on allocation size requested)

Compute Nodes

Aries High-Speed
Network

Blade = 2x Burst Buffer Node: 4 Intel P3608 3.2 TB SSDs

InfiniBand Fabric

Lustre OSS/OST

St
o

ra
ge

Fa

b
ri

c
(I

n
fi

n
iB

an
d

)

Storage Servers

CN

CN CN

CN

BB SSD
SSD

ION IB
IB

Burst Buffer: http://www.nersc.gov/users/computational-systems/cori/burst-buffer/

Burst
Buffer

Lustre

Nodes 288 248

Capacity (PB) 1.8 28

http://www.nersc.gov/users/computational-systems/cori/burst-buffer/

Cori's Data Paths

When submitting job, request:

➢ Capacity (GiB or TiB)

➢ Files to stage in before job starts

➢ Files to stage out after job finishes

- 17 -

Compute Nodes IO Nodes Lustre Scratch

Burst Buffer Nodes

Cori's Data Paths

- 18 -

Compute Nodes IO Nodes Lustre Scratch

Burst Buffer Nodes

Before job start:

➢ Create private parallel file system (DWFS)
across parts of multiple BB nodes

➢ Pre-load user data into this DWFS

Compute Nodes IO Nodes Lustre Scratch

At job runtime:
➢ Compute nodes mount DWFS created for

job

➢ User application interacts with DWFS via
standard POSIX I/O

DVS

Cori's Data Paths

- 19 -

Burst Buffer Nodes

Cori's Data Paths

- 20 -

Compute Nodes IO Nodes Lustre Scratch

Burst Buffer Nodes

At job completion:

➢ Stage out user data from DWFS to Lustre

Cori's Data Paths

- 21 -

Compute Nodes IO Nodes Lustre Scratch

Burst Buffer Nodes

Double-copy Data Path:

➢ e.g., if cp is issued from a compute node

➢ Bad data path…except when #CN >> #BBNs

Striping, Granularity and Pools
➢ Capacity

➢ How much Burst Buffer resources, e.g., 1000GB
➢ Granularity

➢ Minimum allocation on each Burst Buffer node

➢ 20GiB by default

➢ Access Mode and Type

➢ Mode: Striped vs. Private

➢ Type: Scratch

➢ Put all together:
➢ #DW jobdw capacity=1000GiB access_mode=striped type=scratch

Two kinds of DataWarp Instances

- 23 -

➢ “Instance”: an allocation on the BB

➢ Can it be shared? What is its lifetime?

–Per-Job Instance

➢ Can only be used by job that creates it

➢ Lifetime is the same as the creating job

➢ Use cases: PFS staging, application scratch, checkpoints

–Persistent Instance

➢ Can be used by any job (subject to UNIX file permissions)

➢ Lifetime is controlled by creator

➢ Use cases: Shared data, PFS staging, Coupled job workflow

➢ NOT for long-term storage of data!

Two DataWarp Access Modes

- 24 -

➢ Striped (“Shared”)

➢ Files are striped across all DataWarp nodes

➢ Files are visible to all compute nodes Aggregates both
capacity and BW per file

➢ One DataWarp node elected as the metadata server (MDS)

➢ Private

➢ Files are assigned to one or more DataWarp node (can
chose to stripe)

➢ File are visible to only the compute node that created them

➢ Each DataWarp node is an MDS for one or more compute
nodes

BB_1 BB_2 BB_3

CN
_1

CN_
2

CN_
3

BB_1

CN
_1

CN_
2

CN_
3

- 25 -

How to use DataWarp

➢ Principal user access: SLURM Job script directives: #DW

➢ Allocate job or persistent DataWarp space

➢ Stage files or directories in from PFS to DW; out DW to PFS

➢ Access BB mount point via $DW_JOB_STRIPED, $DW_JOB_PRIVATE,
$DW_PERSISTENT_STRIPED_name

➢ User library API – libdatawarp

➢ Allows direct control of staging files asynchronously

➢ C library interface

➢ https://www.nersc.gov/users/computational-systems/cori/burst-buffer/example-bat
ch-scripts/#toc-anchor-8

➢ https://github.com/NERSC/BB-unit-tests/tree/master/datawarpAPI

https://www.nersc.gov/users/computational-systems/cori/burst-buffer/example-batch-scripts/%23toc-anchor-8
https://www.nersc.gov/users/computational-systems/cori/burst-buffer/example-batch-scripts/%23toc-anchor-8
https://github.com/NERSC/BB-unit-tests/tree/master/datawarpAPI

- 26 -

How to Use Burst Buffer

❏ ‘type=scratch’ – duration just for compute job (i.e. not ‘persistent’)

❏ ‘access_mode=striped’ – visible to all compute nodes and striped across
multiple BB nodes

❏Data ‘stage_in’ before job start and ‘stage_out’ after

#!/bin/bash
#SBATCH –q regular -N 10 -C haswell –t 00:10:00
#DW jobdw capacity=1000GB access_mode=striped type=scratch
#DW stage_in source=/lustre/inputs destination=$DW_JOB_STRIPED/inputs \ type=directory
#DW stage_in source=/lustre/file.dat destination=$DW_JOB_STRIPED/ type=file
#DW stage_out source=$DW_JOB_STRIPED/outputs destination=/lustre/outputs \ type=directory
srun my.x --indir=$DW_JOB_STRIPED/inputs --infile=$DW_JOB_STRIPED/file.dat \
--outdir=$DW_JOB_STRIPED/outputs

Benchmark Performance on Cori

➢ Burst Buffer is now doing very well against benchmark performance targets

➢ Out-performs Lustre significantly

➢ (One of the) fastest I/O system in the world!

IOR Posix FPP IOR MPIO Shared File IOPS

Read Write Read Write Read Write

Best Measured (287 Burst Buffer
Nodes : 11120 Compute Nodes; 4
ranks/node)* 1.7 TB/s 1.6 TB/s 1.3 TB/s 1.4 TB/s 28M 13M

*Bandwidth tests: 8 GB block-size 1MB transfers IOPS tests: 1M blocks 4k transfer

- 27 -

➢ Selecting subsets of galaxy spectra from a large dataset

➢ Small, random memory accesses

➢ Typical web query for SDSS dataset

- 28 -

Time taken to extract
1000 random spectra

From one
HDF5 file

From one
FITS file

From Lustre 44.1s 160.3s
From BB 1.3s 44.0s
Speedup: 33x 3.6x

H5Boss

Thank you.

- 29 -

